Hàm số nghịch biến khi nào? Lý thuyết và bài tập

By | March 9, 2024

Hàm số đồng nghịch biến là kiến thức trọng yếu của chương trình toán phổ thông. Vậy Hàm số nghịch biến khi nào? Định nghĩa và điều kiện của hàm số nghịch biến là gì? Vik News sẽ giúp bạn giải đáp thắc mắc qua bài viết này.

Dạng toán hàm số nghịch biến thường xuất hiện nhiều trong các đề thi THPTQG và trong các đề thi thử của các trường trên toàn quốc. Nhiều bạn vẫn thắc mắc Hàm số nghịch biến khi nào? Điều kiện của nó là gì? Bài viết này của Vik News sẽ giải đáp và giúp các bạn ôn tập tốt dạng toán này!

Định nghĩa hàm số nghịch biến

Hàm số nghịch biến, đồng biến hay còn gọi là hàm số đơn điệu.

Cho K là một khoảng, một đoạn hoặc một nửa khoảng và y = f(x) là một hàm số xác định trên K.

Hàm số y = f(x) được gọi là nghịch biến (giảm) trên K, nếu:

  • ∀ x1, x2 ∊ K mà x1 < x2 thì f (x1) > f (x2)
  • Biểu diễn đồ thị hàm số là một đường đi xuống.

Hàm số nghịch biến khi nào?

Hàm số f nghịch biến trên K khi và chỉ khi:

Điều kiện đủ để hàm số nghịch biến

Cho hàm số f có đạo hàm trên K.

Nếu f'(x) < 0 với mọi x ∈ K thì f nghịch biến trên K.

Định lí mở rộng

Chỉ xét K là một khoảng

Giả sử hàm số f có đạo hàm trên K

Nếu f'(x) ≤ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f nghịch biến trên K.

Phương pháp xét tính đơn điệu của hàm số

  • Tìm tập xác định
  • Tính đạo hàm f'(x). Tìm các điểm xi (i= 1 , 2 ,…, n) mà tại đó f'(x) bằng 0 hoặc không xác định.
  • Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.
  • Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Bài tập mẫu

Dạng toán xét sự đồng biến, nghịch biến của hàm số

Hàm số nghịch biến khi nào? Lý thuyết và bài tập

Kết luận: Hàm số đồng biến trên các khoảng (-∞;2) và (4;+∞), nghịch biến trên khoảng (2;4).

Hàm số nghịch biến khi nào? Lý thuyết và bài tập

Dạng toán tìm m để hàm số nghịch biến

Ví dụ 4: Tìm m để hàm số: nghịch biến trong khoảng (-1/2;1/2)

Hàm số nghịch biến khi nào? Lý thuyết và bài tậpHàm số nghịch biến khi nào? Lý thuyết và bài tập

Qua những kiến thức trên mà Vik News chia sẻ, hy vọng bạn đọc sẽ nắm vững kiến thức về hàm số nghịch biến khi nào và ôn tập thật tốt. Chúc các bạn thành công!

Tổng hợp: Vik News