Phân dạng và bài tập Hình học lớp 9

Các dạng và cách giải Toán lớp 9 Tài liệu tổng kết chuyên đề Hình học gồm 71 trang rất hữu ích, được chia thành nhiều chương, bao gồm hệ thống lý thuyết và dạng bài tập Hình học 9.

Tóm tắt Định dạng Toán Hình học Lớp 9 Tóm tắt lý thuyết và các dạng bài trong 4 chương chương trình Toán 9. Dạng toán lớp 9 được trình bày rất khoa học và phù hợp với mọi đối tượng học sinh có học lực trung bình, khá trở lên. Điều này cho phép học sinh củng cố và nắm bắt các kiến ​​thức cơ bản và vận dụng vào thực tế cơ bản. Bạn cũng có thể tham khảo thêm các bài viết khác như chủ đề Giải phương trình bậc hai bằng tham số, Bài tập quan hệ Vi-et, ứng dụng. Nội dung tài liệu dạng toán lớp 9 như sau:

Chương 1: Hệ thức lượng của tam giác vuông

Chủ đề 1. Tỉ số cạnh và chiều cao của tam giác vuông

  • Hình 1. Tính độ dài đoạn thẳng trong tam giác vuông.
  • Kiểu 2. Cấu trúc đường Pitago; Lấy trung bình nhân.
  • Dạng 3. Bằng chứng về mối quan hệ hình học.

Chủ đề 2. Tỉ số lượng giác của góc nhọn

  • Dạng 1. Tính các tỉ số lượng giác.
  • Dạng 2. Cho tỉ số lượng giác m / n, dựng góc α.
  • Dạng 3. Nếu biết tỉ số lượng giác của một góc, hãy tính tỉ số lượng giác của một góc khác.
  • Nhập 4 Sắp xếp các tỷ số lượng giác mà không cần sử dụng bảng số và máy tính bỏ túi.
  • Dạng 5. Chứng minh tam giác.

Chủ đề 3. Tỉ số các cạnh và các góc của tam giác vuông

  • Hình 1. Giải một tam giác vuông, biết độ dài một cạnh và độ lớn của góc nhọn.
  • Hình 2. Giải một tam giác vuông có hai cạnh đã biết.
  • Hình 3. Tính các cạnh và các góc của tam giác.

Chương 2. thắng

Chủ đề 1. Định nghĩa đường tròn

  • Dạng 1. Chứng minh rằng nhiều điểm cùng thuộc một đường tròn.
  • Hình 2. Xác định tâm và bán kính của chu vi.
  • Hình 3. Hãy tạo thành một đường tròn thỏa mãn điều kiện cho trước.

Chủ đề 2. Đường kính cung và chuỗi

  • Dạng 1. Chứng minh rằng hai đoạn thẳng đồng dư. Hai chuỗi là tương đương.
  • Dạng 2. Tính độ dài đoạn thẳng. độ dài cung.
  • Dạng 3. So sánh hai hợp âm – hai đoạn thẳng.

Chủ đề 3. Vị trí tương đối của đường và đường tròn

  • Nhập 1. Xác định vị trí tương đối của đường thẳng và đường tròn.
  • Hình dạng 2. Tìm vị trí mà tâm của một vòng tròn có bán kính cụ thể tiếp xúc với một đường cụ thể.

Chủ đề 4. Tính chất của tiếp tuyến

  • Dạng 1. Tính độ dài đoạn tiếp tuyến.
  • Dạng 2. Chứng minh rằng đường thẳng là tiếp tuyến của đường tròn.
  • Dạng 3. Chứng minh sự tương đương hình học.

Chủ đề 5. Vị trí tương đối của hai đường tròn

  • Nhập 1. Xác định vị trí tương đối của hai đường tròn.
  • Dạng 2. Bài toán về hai đường tròn tiếp tuyến.
  • Dạng 3. Bài toán về hai đường tròn cắt nhau.

Bài 3: Góc với hình tròn

Chủ đề 1. Góc ở tâm, rađian và hệ thức giữa dây cung và dây.

  • Hình dạng 1. Mối quan hệ giữa góc ở tâm và dây cung.
  • Dạng 2. Quan hệ dây cung.

Chủ đề 2. Góc nội tiếp và góc tạo bởi tia tiếp tuyến với dây cung.

Hình dạng 2. Góc giữa tiếp tuyến và hợp âm.

Chủ đề 3. Góc có đỉnh nằm trong hoặc ngoài đường tròn

Nhập 1. Áp dụng một góc có các đỉnh nằm trong một đường tròn.

Chủ đề 4. Cung chứa góc.

Dạng 1. Áp dụng để giải quyết các vấn đề về vị trí và công trình.

Chủ đề 5. Nội tiếp hình chữ nhật và đường tròn ngoại tiếp

  • Dạng 1. Chứng minh phép biến hình nội tiếp.
  • Dạng 2. Chứng minh rằng nhiều điểm cùng nằm trên một đường tròn.

Chủ đề 6. Hình trụ hình chữ nhật và hình tròn ngoại tiếp

  • Phương trình 1. Chứng minh mối quan hệ giữa các cạnh của tứ giác nội tiếp.
  • Dạng 2. Chứng minh tứ giác nội tiếp.

Chủ đề 7. Độ dài của đường tròn và độ dài của cung

  • Định dạng 1. Tính độ dài của hình tròn, cung tròn hoặc đại lượng có liên quan.
  • Định dạng 2. Tính độ dài cung dựa trên cung được kết nối.

Chủ đề 8. Diện tích hình tròn, diện tích hình quạt

  • Hình 1. Tính diện tích hình tròn là hình quạt của hình tròn.
  • Hình dạng 2. Tính diện tích hình bầu dục, hình bánh rán và các hình dạng khác có liên quan đến cung tròn.

Chương 4: Xi lanh – Hình nón – Hình cầu

Chủ đề 1. Môi trường và thể tích xi lanh

  • Dạng 1. Tính toán diện tích chu vi – Tổng diện tích, thể tích xylanh hoặc các yếu tố liên quan.
  • Hình dạng 2. Môi trường – thể tích của hình tổng hợp.

Chủ đề 2. Môi trường và thể tích của hình nón, hình nón cụt

  • Hình 1. Tính rađian hoặc bán kính của đường tròn hoặc nửa góc từ các đỉnh của hình nón.
  • Dạng 2. Nếu biết hai trong ba yếu tố thì chu vi, thể tích hình nón, hình nón cụt và các đại lượng liên quan. Bán kính, chiều cao, đường sinh mặc định.
  • Hình 3. Tính diện tích, thể tích của hình phức tạp gồm nhiều hình.

Chủ đề 3. Khối cầu và khối lượng hình cầu

  • Dạng 1. Tính diện tích hình cầu, thể tích hình cầu nếu biết bán kính hình cầu hoặc ngược lại nếu biết thể tích hoặc diện tích.
  • Hình 2. Tính diện tích và thể tích của một hình hợp gồm nhiều hình.

… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …

Các dạng và cách giải Toán lớp 9


Thông tin thêm

Phân dạng và bài tập Hình học lớp 9

Các dạng Toán hình lớp 9 và cách giải là tài liệu cực kì hữu ích gồm 71 trang tổng hợp theo chủ đề Hình học có nội dung phân chia thành các chương như SGK hệ thống lý thuyết và dạng bài tập phần Hình học 9.
Tổng hợp các dạng toán Hình học lớp 9 tóm tắt đầy đủ lý thuyết và các dạng bài tập 4 chương trong chương trình Toán 9. Các dạng toán hình lớp 9 được biên soạn rất khoa học, phù hợp với mọi đối tượng học sinh có học lực từ trung bình, khá đến giỏi. Qua đó giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản. Ngoài ra các bạn tham khảo thêm tài liệu: chuyên đề Giải phương trình bậc 2 chứa tham số, bài tập hệ thức Vi-et và các ứng dụng. Nội dung tài liệu các dạng Toán hình lớp 9 bao gồm:
Chương 1: Hệ thức lượng trong tam giác vuông
Chủ đề 1. Hệ thức về cạnh và đường cao trong tam giác vuông
Dạng 1. Tính độ dài đoạn thẳng trong tam giác vuông.
Dạng 2. Dựng đoạn thẳng Py-ta-go; Dựng đoạn trung bình nhân.
Dạng 3. Chứng minh hệ thức hình học.
Chủ đề 2. Tỉ số lượng giác của một góc nhọn
Dạng 1. Tính tỉ số lượng giác.
Dạng 2. Dựng góc α biết một tỉ số lượng giác là m/n.
Dạng 3. Tính cạnh, tỉ số lượng giác của góc còn lại khi biết tỉ số lượng giác của một góc.
Dạng 4. Sắp thứ tự các tỉ số lượng giác mà không dùng bảng số và máy tính.
Dạng 5. Chứng minh hệ thức lượng giác.
Chủ đề 3. Hệ thức về cạnh và góc trong tam giác vuông
Dạng 1. Giải tam giác vuông biết độ dài một cạnh và số đo một góc nhọn.
Dạng 2. Giải tam giác vuông biết hai cạnh.
Dạng 3. Tính cạnh, tính góc của tam giác.
Chương 2. Đường tròn
Chủ đề 1. Sự xác định đường tròn
Dạng 1. Chứng minh nhiều điểm cùng thuộc một đường tròn.
Dạng 2. Xác định tâm và bán kính của đường tròn ngoại tiếp.
Dạng 3. Dựng đường tròn thỏa mãn điều kiện cho trước.
Chủ đề 2. Đường kính và dây cung của một cung tròn
Dạng 1. Chứng minh hai đoạn thẳng bằng nhau. Hai dây bằng nhau.
Dạng 2. Tính độ dài một đoạn thẳng. Độ dài một cung.
Dạng 3. So sánh hai dây cung – Hai đoạn thẳng.
Chủ đề 3. Vị trí tương đối của đường thẳng và đường tròn
Dạng 1. Xác định vị trí tương đối của đường thẳng và đường tròn.
Dạng 2. Tìm vị trí tâm của một đường tròn có bán kính cho trước tiếp xúc với một đường thẳng cho trước.
Chủ đề 4. Các tính chất của tiếp tuyến
Dạng 1. Tính độ dài của một đoạn tiếp tuyến.
Dạng 2. Chứng minh một đường thẳng là tiếp tuyến của một đường tròn.
Dạng 3. Chứng minh đẳng thức hình học.
Chủ đề 5. Vị trí tương đối của hai đường tròn
Dạng 1. Xác định vị trí tương đối của hai đường tròn.
Dạng 2. Các bài toán với hai đường tròn tiếp xúc nhau.
Dạng 3. Các bài toán với hai đường tròn cắt nhau.
Chương 3: Góc với đường tròn
Chủ đề 1. Góc ở tâm, số đo cung, liên hệ giữa cung và dây.
Dạng 1. Sự liên hệ giữa góc ở tâm và cung.
Dạng 2. Sự liên hệ giữa cung và dây.
Chủ đề 2. góc nội tiếp và góc tạo bởi tia tiếp tuyến với một dây cung
Dạng 2. Góc tạo bởi tia tiếp tuyến và dây cung.
Chủ đề 3. Góc có đỉnh ở trong hoặc ngoài đường tròn
Dạng 1. Áp dụng góc có đỉnh ở trong đường tròn.
Chủ đề 4. Cung chứa góc
Dạng 1. Áp dụng giải các bài toán về quỹ tích và dựng hình.
Chủ đề 5. Tứ giác nội tiếp và đường tròn ngoại tiếp
Dạng 1. Chứng minh tứ giác nội tiếp.
Dạng 2. Chứng minh nhiều điểm cùng nằm trên một đường tròn.
Chủ đề 6. Tứ giác ngoại tiếp và đường tròn ngoại tiếp
Dạng 1. Chứng minh các hệ thức liên hệ giữa các cạnh của tứ giác ngoại tiếp.
Dạng 2. Chứng minh tứ giác ngoại tiếp.
Chủ đề 7. Độ dài đường tròn và độ dài cung tròn
Dạng 1. Tính độ dài đường tròn, cung tròn hoặc các đại lượng liên quan.
Dạng 2. Tính độ dài của cung tròn do các cung chắp nối thành.
Chủ đề 8. Diện tích hình tròn, diện tích hình quạt
Dạng 1. Tính diện tích hình tròn, quạt tròn.
Dạng 2. Tính diện tích hình viên phân, hình vành khăn và những hình khác có liên quan đến cung tròn.
Chương 4: Hình trụ – hình nón – hình cầu
Chủ đề 1. Diện tích xung quanh và thể tích hình trụ
Dạng 1. Tính diện tích xung quanh – Diện tích toàn phần, thể tích hình trụ hoặc các yếu tố liên quan.
Dạng 2. Diện tích xung quanh – Thể tích của một hình hỗn hợp.
Chủ đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Dạng 1. Tính số đo cung hoặc bán kính hình quạt tròn hoặc nửa góc ở đỉnh của hình nón.
Dạng 2. Diện tích xung quanh, thể tích của hình nón, nón cụt và các đại lượng có liên quan nếu biết hai trong ba yếu tố. Bán kính đáy, chiều cao, đường sinh.
Dạng 3. Tính diện tích xung quanh, thể tích của một hình hỗn hợp, gồm nhiều hình.
Chủ đề 3. Diện tích mặt cầu và thể tích hình cầu
Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu khi biết bán kính của hình cầu hoặc ngược lại, tính bán kính hình cầu khi biết thể tích hoặc diện tích của nó.
Dạng 2. Tính diện tích, thể tích của một hình hỗn hợp gồm nhiều hình.
……….
Các dạng Toán hình lớp 9 và cách giải

#Phân #dạng #và #bài #tập #Hình #học #lớp

Phân dạng và bài tập Hình học lớp 9

Các dạng Toán hình lớp 9 và cách giải là tài liệu cực kì hữu ích gồm 71 trang tổng hợp theo chủ đề Hình học có nội dung phân chia thành các chương như SGK hệ thống lý thuyết và dạng bài tập phần Hình học 9.
Tổng hợp các dạng toán Hình học lớp 9 tóm tắt đầy đủ lý thuyết và các dạng bài tập 4 chương trong chương trình Toán 9. Các dạng toán hình lớp 9 được biên soạn rất khoa học, phù hợp với mọi đối tượng học sinh có học lực từ trung bình, khá đến giỏi. Qua đó giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản. Ngoài ra các bạn tham khảo thêm tài liệu: chuyên đề Giải phương trình bậc 2 chứa tham số, bài tập hệ thức Vi-et và các ứng dụng. Nội dung tài liệu các dạng Toán hình lớp 9 bao gồm:
Chương 1: Hệ thức lượng trong tam giác vuông
Chủ đề 1. Hệ thức về cạnh và đường cao trong tam giác vuông
Dạng 1. Tính độ dài đoạn thẳng trong tam giác vuông.
Dạng 2. Dựng đoạn thẳng Py-ta-go; Dựng đoạn trung bình nhân.
Dạng 3. Chứng minh hệ thức hình học.
Chủ đề 2. Tỉ số lượng giác của một góc nhọn
Dạng 1. Tính tỉ số lượng giác.
Dạng 2. Dựng góc α biết một tỉ số lượng giác là m/n.
Dạng 3. Tính cạnh, tỉ số lượng giác của góc còn lại khi biết tỉ số lượng giác của một góc.
Dạng 4. Sắp thứ tự các tỉ số lượng giác mà không dùng bảng số và máy tính.
Dạng 5. Chứng minh hệ thức lượng giác.
Chủ đề 3. Hệ thức về cạnh và góc trong tam giác vuông
Dạng 1. Giải tam giác vuông biết độ dài một cạnh và số đo một góc nhọn.
Dạng 2. Giải tam giác vuông biết hai cạnh.
Dạng 3. Tính cạnh, tính góc của tam giác.
Chương 2. Đường tròn
Chủ đề 1. Sự xác định đường tròn
Dạng 1. Chứng minh nhiều điểm cùng thuộc một đường tròn.
Dạng 2. Xác định tâm và bán kính của đường tròn ngoại tiếp.
Dạng 3. Dựng đường tròn thỏa mãn điều kiện cho trước.
Chủ đề 2. Đường kính và dây cung của một cung tròn
Dạng 1. Chứng minh hai đoạn thẳng bằng nhau. Hai dây bằng nhau.
Dạng 2. Tính độ dài một đoạn thẳng. Độ dài một cung.
Dạng 3. So sánh hai dây cung – Hai đoạn thẳng.
Chủ đề 3. Vị trí tương đối của đường thẳng và đường tròn
Dạng 1. Xác định vị trí tương đối của đường thẳng và đường tròn.
Dạng 2. Tìm vị trí tâm của một đường tròn có bán kính cho trước tiếp xúc với một đường thẳng cho trước.
Chủ đề 4. Các tính chất của tiếp tuyến
Dạng 1. Tính độ dài của một đoạn tiếp tuyến.
Dạng 2. Chứng minh một đường thẳng là tiếp tuyến của một đường tròn.
Dạng 3. Chứng minh đẳng thức hình học.
Chủ đề 5. Vị trí tương đối của hai đường tròn
Dạng 1. Xác định vị trí tương đối của hai đường tròn.
Dạng 2. Các bài toán với hai đường tròn tiếp xúc nhau.
Dạng 3. Các bài toán với hai đường tròn cắt nhau.
Chương 3: Góc với đường tròn
Chủ đề 1. Góc ở tâm, số đo cung, liên hệ giữa cung và dây.
Dạng 1. Sự liên hệ giữa góc ở tâm và cung.
Dạng 2. Sự liên hệ giữa cung và dây.
Chủ đề 2. góc nội tiếp và góc tạo bởi tia tiếp tuyến với một dây cung
Dạng 2. Góc tạo bởi tia tiếp tuyến và dây cung.
Chủ đề 3. Góc có đỉnh ở trong hoặc ngoài đường tròn
Dạng 1. Áp dụng góc có đỉnh ở trong đường tròn.
Chủ đề 4. Cung chứa góc
Dạng 1. Áp dụng giải các bài toán về quỹ tích và dựng hình.
Chủ đề 5. Tứ giác nội tiếp và đường tròn ngoại tiếp
Dạng 1. Chứng minh tứ giác nội tiếp.
Dạng 2. Chứng minh nhiều điểm cùng nằm trên một đường tròn.
Chủ đề 6. Tứ giác ngoại tiếp và đường tròn ngoại tiếp
Dạng 1. Chứng minh các hệ thức liên hệ giữa các cạnh của tứ giác ngoại tiếp.
Dạng 2. Chứng minh tứ giác ngoại tiếp.
Chủ đề 7. Độ dài đường tròn và độ dài cung tròn
Dạng 1. Tính độ dài đường tròn, cung tròn hoặc các đại lượng liên quan.
Dạng 2. Tính độ dài của cung tròn do các cung chắp nối thành.
Chủ đề 8. Diện tích hình tròn, diện tích hình quạt
Dạng 1. Tính diện tích hình tròn, quạt tròn.
Dạng 2. Tính diện tích hình viên phân, hình vành khăn và những hình khác có liên quan đến cung tròn.
Chương 4: Hình trụ – hình nón – hình cầu
Chủ đề 1. Diện tích xung quanh và thể tích hình trụ
Dạng 1. Tính diện tích xung quanh – Diện tích toàn phần, thể tích hình trụ hoặc các yếu tố liên quan.
Dạng 2. Diện tích xung quanh – Thể tích của một hình hỗn hợp.
Chủ đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Dạng 1. Tính số đo cung hoặc bán kính hình quạt tròn hoặc nửa góc ở đỉnh của hình nón.
Dạng 2. Diện tích xung quanh, thể tích của hình nón, nón cụt và các đại lượng có liên quan nếu biết hai trong ba yếu tố. Bán kính đáy, chiều cao, đường sinh.
Dạng 3. Tính diện tích xung quanh, thể tích của một hình hỗn hợp, gồm nhiều hình.
Chủ đề 3. Diện tích mặt cầu và thể tích hình cầu
Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu khi biết bán kính của hình cầu hoặc ngược lại, tính bán kính hình cầu khi biết thể tích hoặc diện tích của nó.
Dạng 2. Tính diện tích, thể tích của một hình hỗn hợp gồm nhiều hình.
……….
Các dạng Toán hình lớp 9 và cách giải

#Phân #dạng #và #bài #tập #Hình #học #lớp


Tổng hợp: Vik News

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button